État de l’art des approches en apprentissage par renforcement multi-agent


En apprentissage par renforcement, un agent adapte son comportement afin de maximiser une récompense. Ces approches sont utilisées pour apprendre à un agent comment agir dans son environnement. D’importantes difficultés apparaissent lorsque l’on applique ces approches à plusieurs agents. Dans ce cas-là, directement transposer les approches d’apprentissage par renforcement a de grandes chances d’échouer. Ainsi, il devient intéressant d’utiliser de nouvelles approches spécifiquement adaptées aux systèmes multi-agents. Cet article présente un état de l’art sur les approches d’apprentissage par renforcement multi-agent. La synthèse proposée se focalise sur l’approche sous-jacente plutôt que sur la nature des algorithmes. Elle a pour but d’aider à identifier les meilleures solutions selon le contexte.