Explicabilité et interprétabilité d’un système multi-agent ensembliste pour l’apprentissage supervisé


Nous présentons une approche d’apprentissage ensembliste multi-agent pour l’apprentissage supervisé et évaluons ses performances sur une tâche d’approximation de fonctions nonlinéaires. Cette approche repose sur un ensemble d’agents apprenants faibles s’auto-organisant selon des règles de coopération. Nous étudions les propriétés de ce type de système en termes d’explicabilité et d’interprétabilité sur le processus de prédiction, en  analysant la forme des agents et leur organisation spatiale. Une étude comparative sur des jeux de données synthétiques  générées à partir de fonctions bidimensionnelles est également menée pour évaluer les performances par rapport à l’état de l’art. Les résultats indiquent que notre approche multiagent obtient des scores de prédiction similaires  aux approches de l’état de l’art et apporte de nouvelles propriétés contribuant à l’apprentissage supervisé explicable.